
 
Superworms and Cryptovirology: a Deadly Combination 

 
Ivan Balepin 

Department of Computer Science 
University of California, Davis 

ibalepin@ucdavis.edu 
 
 

Abstract 
Understanding the possible extent of the future attacks 
is the key to successfully protecting against them. 
Designers of protection mechanisms need to keep in 
mind the potential ferocity and sophistication of 
viruses that are just around the corner. That is why we 
think that the potential destructive capabilities of fast 
spreading worms like the Warhol worm, Flash worm 
and Curious Yellow need to be explored to the 
maximum extent possible. While re-visiting some 
techniques of viruses from the past, we can come 
across some that utilize cryptographic tools in their 
malicious activity. That alarming property, combined 
with the speed of the so-called �superworms�, is 
explored in the present work. Suggestions for 
countermeasures and future work are given. 
Keywords: computer viruses, worms, cryptography, 
cryptovirology 

 
1. Introduction 

 
The most distinctive and alarming trends in 

current computer attacks are high automation and 
speed, increasing sophistication of attack tools, 
vulnerability discovery rate that is hard to keep up 
with, increasing permeability of firewalls and highly 
asymmetric nature of threat [1]. Monitoring 
organizations name worms as one of the four most 
alarming types of today�s attacks. 

The most notable incidents that caused such 
concern include the outbreaks of Code Red [10], Code 
Red II [11], Nimda [9], and, more recently, 
linux.slapper [12] worms. All four worms were noted 
for their extraordinary propagations speeds; however, 
damage-wise, they were rated as a low threat. Such a 
discrepancy between the levels of propagation 
techniques and destructive capabilities was 
immediately spotted, and several interesting works 
were produced ([2],[3],[4]) that (sometimes too 
emotionally) put the situation in perspective and 
explored the limits of destructive potential of fast-
spreading, cooperating malicious entities. 

However, this potential becomes even more 
overwhelming when one tries to combine the swiftness 
of the worms with the ferocity of some viruses from 
the past. Cryptography, as some point out [5], is 
usually thought of as a science that supplies us with 
tools to enforce integrity and confidentiality; however, 

its undoubted strengths can be used to attack these 
same properties. Some of the studied viruses relied on 
cryptographic tools to cause damage that is quite hard 
to un-do. 

This paper explores the combination of fast 
worms and cryptovirologic virus techniques. First, in 
Section 2.1, we give a survey of works describing the 
Warhol worm, Flash worm and Curious Yellow. Then, 
in Section 2.2 we describe Cryptovirology and 
potential damage that can be done by viruses with 
cryptographic capabilities. Section 3 is dedicated to 
further damage assessment and the countermeasures to 
the problem that we suggest. Finally, Section 4 is a 
summary of the ideas outlined in this paper. 

 
2. Overview 

 
2.1 Warhol Worm 

 
The widely discussed [13] work on the 

Warhol worm begins by a quick analysis of the worms 
that plagued the internet in 2001. The famous Code 
Red virus was quite successful in its propagation. 
However, it performed random automatic scanning for 
the new victims, and utilized only one vulnerability in 
the Microsoft Internet Information Services (IIS). The 
worm did not use any local information to spread itself 
more efficiently. It did not have any communication or 
coordination capabilities. 

Nonetheless, after a quick analysis, the 
authors come to a conclusion that the proportion of 
web servers infected grew exponentially with time. In 
the beginning, each infected server was able to find 1.8 
other vulnerable servers per hour; in the final stages of 
the worm�s life, the rate was 0.7. Code Red turned 
itself off on July 19, 2001. 

Damage-wise, Code Red had a distributed 
denial of service (DDOS) payload targeting the IP 
address of www.whitehouse.gov, and some web site 
defacement capabilities. Apart from that, it initiated an 
extraordinary amount of scanning traffic from the 
victim host. While somewhat bothersome, these actions 
cannot be considered a serious attack and indicate that 
the creator of the worm most likely pursued 
experimental goals. 

A distinctive characteristic of Code Red is the 
very random nature of scanning it performed. 
According to the authors� data, Code Red entities 



scanned the same computers for the same 
vulnerabilities up to 500000 times per hour! The 
proportion of wasted scanning traffic becomes even 
more impressive if we consider the percentage of all 
possible IP addresses that actually map to active web 
servers running IIS with the targeted vulnerability. 
Such a random propagation strategy has several 
disadvantages: it wastes victim�s resources, greatly 
reduces the propagation speed, reveals itself on the 
target system, and makes the worm world-famous in a 
matter of hours. 

Code Red II targeted the same single IIS 
vulnerability as Code Red. As a scanning strategy 
improvement, it chose a random IP address from the 
victim�s the class B address space with probability of 
3/8, a random IP address from the victim�s the class A 
address space with probability of 1/2, and an absolutely 
random IP address with a probability of 1/8. The 
authors note that such improved scanning strategy was 
successful, due to the fact that apparently hosts with 
similar vulnerabilities tend to be closer on the network, 
and also the quicker contamination of firewall-
protected domains, once some Code Red II instance 
managed to get inside such network. The worm died by 
design on October 1, 2001. 

Based on the new propagation strategy, we 
can conclude that the author of Code Red II, most 
likely, also pursued experimental goals, taking no time 
to address multiple vulnerabilities, or develop a more 
meaningful way to spread the virus. 

The new virus had a potentially more 
damaging payload, which installed a root backdoor 
allowing unrestricted remote access to the infected 
host. However, Code Red II was quickly contained too, 
immediately revealing itself on the victim hosts. 

The authors also argue that analysis of Code 
Red II behavior would be more involved than Code 
Red�s, due to the fact that the two viruses overlapped 
and interfered with each other, and also to the local 
scanning strategy of the former. 

Finally, the authors describe the Nimda worm, 
which contained a few obvious improvements. Nimda 
used five different ways to propagate itself, namely: an 
IIS vulnerability, bulk emails, open network shares, 
defaced web pages to infect visitors through their 
browsers and backdoors left by Code Red II and 
sadmind viruses. Such multi-vector approach also 
helped to penetrate the firewalls quicker, since most 
organizations leave incoming mail handling to the mail 
server or even users themselves. These improvements 
made Nimda another widely discussed worm; however, 
Nimda still appears to be a quick hack that lacks any 
solid design or purpose.  The worm displayed the same 
characteristics; the authors cite their measurements on 
a Lawrence Berkeley National Laboratory computer 
that showed a peak hit rate of 140 Nimda HTTP 
connections per second. Despite the same inefficiency, 
system administrators report Nimda activity still, more 
than a year since the attack [13]. 

Nimda did not carry a communication or 
coordination payload. According to most sources 
([9],[2]), the worm did not include any apparent 
destructive functions, apart from the ones that 
facilitated further propagation. 

 
A large part of the paper is dedicated to 

considering possible worm improvements. The authors 
refer to the improved virus as a �Warhol worm�. First, 
they look at so-called �hit-list scanning�, which is 
collecting a list of vulnerable hosts prior to worm 
launch. After the pre-scanning stage, the worm would 
be unleashed on the hosts in the list. The authors argue 
that it took existing worm the longest to infect the first 
10000 hosts and infection grew exponentially; 
therefore, a boost of 50000 would greatly speed up the 
propagation. 

Permutation scanning is another improvement 
targeted at reducing the scanning overlap between 
warm entities. The new worm would generate an IP 
address space permutation using a 32-bit block cipher 
and a pre-selected key. It would encrypt an IP to get 
the corresponding permutation, and decrypt to get an 
IP.  During the infection, it would work up the 
permutation starting from a random IP�s hash, and re-
start at a random point in the hash every time it comes 
across an already infected system. Another 
improvement would be to stop completely after 
running into several infected hosts in row; that would 
indicate that the Internet is completely infected. 

In a partitioned permutation scheme, worm 
instances get a hash range they are responsible for, and 
they halve their range every time they infect a new 
host, giving the other half to the new instance. When 
an instance completes its range scan, it restarts from a 
random point in the hash.  

Topological scanning relies on the information 
and properties of the infected hosts, such as email 
addresses found on hard drives, a list of peers from a 
peer-to-peer networks a host might be participating in, 
etc. Some ([13]) note that a �spider� type of  virus, 
which would operate similarly to web indexing and 
email collecting spiders, might also be efficient. That 
kind of a virus would be completely topology-
dependent, traversing the network using popular 
protocols (HTTP, FTP, etc.) following the links it 
collects on its way. Such a possibility can also be 
considered in a separate work. Giving a Warhol worm 
spider-like capabilities appears to be another 
improvement in its propagation techniques. 

The authors proceed to describe a so-called 
Flash worm. Such a worm, they argue, would require a 
somewhat more involved preparation stage, however, 
their simulations show that it would spread out in about 
30 seconds as opposed to 15 minutes it takes the 
Warhol worm to subvert the Internet. In order to start a 
Flash worm, an individual (or a terrorist organization) 
would preferably have an access to an OC-12 type of 
network connection. In that case, according to the 



authors� calculations, they would be able to pre-scan 
the whole web server space in a reasonable amount of 
time, and build a list of approximately 9 million web 
servers to start with. Such a list would cover the 
majority of the Internet, according to the recent 
Netcraft survey [14], and would require only 7.5 
Mbytes to store in compressed form, according to 
authors� calculations. The first Flash worm instances 
would take the entire list, and would handle it similarly 
to the permutation scanning hash, halving the list for 
every new victim. Some redundancy would be required 
to prevent the first several instances from getting 
caught and not covering their part of the Internet.  

Finally, the authors describe a stealthy slow-
propagating contagion worm, which prefers concealing 
itself to fast propagation. Although it presents another 
interesting research topic, we would like to focus on 
the first two worms as the ones having a greater 
destructive potential. 

Throughout the paper, the authors 
complement their arguments with descriptions of 
measurements and simulations they performed, and 
overall form an impression of a credible research work.  

We observe that despite being a first serious 
analysis of worm design and suggesting a multitude of 
further research directions, the authors seldom mention 
a possibility of worm instances cooperating 
communicating with each other and the originator of 
the worm. We also note that the described worms do 
not rely on any cryptographic mechanisms except for 
trivial IP hashing for permutation scanning or, perhaps, 
encrypting itself to hide from static anti-virus scanners. 

Nicholas Weaver published a follow-up work 
exploring how permutation scanning interacts with 
different ways the virus spreads itself ("multimode" or 
"multivector" worms). He also included a brief 
discussion of distributed control and update 
mechanisms; however, it still did not contain a solid 
coordination strategy. 

 
2.2 Curious Yellow 

 
The issues of worm communication and 

coordination were addressed in the design of a Curious 
Yellow worm [4]. 

Although the work is somewhat fictional in it 
nature and the author does not always provide a proof 
for his ideas, it presents another serious analysis of the 
worm potential and numerous directions for future 
research. 

First, the author describes the benefits of 
worm coordination, which include the ability to easily 
assign an infection domain to each instance of the 
worm, easy control and update mechanisms, and less 
traffic which reveals the worm. 

The difficulties of such coordination include 
problems with the truly gigantic scale of coordination, 
minimizing coordination costs, the need to take 
spoofed updates into account, etc. The author 

concludes that some of these issues are similar to the 
ones observed in large scale peer-to-peer networks. 

The author then proceeds to describing a peer-
to-peer Chord strategy developed at MIT [15] in the 
context of a large-scale worm. The scheme, which is 
essentially a distributed hash table, is used to assign 
portions of task space to individual instances of the 
worm. In the improved version of Chord, Achord, all 
nodes act anonymously: a node cannot determine the 
identity of other nodes. The author argues that in a 
developing worm network, it would take a node 
O(logN) time to communicate with any other node, and 
a node would have to store information about O(logN) 
nodes for the most efficient communication. Therefore, 
in a network of 10 million nodes (which approximates 
the number of potential infected web servers) it would 
take correspondingly 23 node hops and 23 nodes to 
store. The instances use a hash (for example, SHA1) 
for identification, and once they find a new target, they 
pass it to the closest neighbor, or infect it themselves. 

As an unsupported claim, the author argues 
that the Curious Yellow worm would form a fully 
connected network, and any messages such as code 
updates, etc., could be distributed network-wide in less 
that 15 seconds. Although that estimate remains to be 
verified, if we accept it, then we now have a malicious 
network that potentially can patch itself much quicker 
than a corresponding solution would be distributed 
network-wide.  

In the section that explores potential uses for 
such a powerful network, the author notes that a DDOS 
against a few servers or disruption of the entire Internet 
would not utilize the worm to its full potential. Among 
the more creative uses the author names the possibility 
of defacing web pages uncontrollably, either at the host 
or at surrounding routers,  isolating the unwanted 
servers, or the ones resisting the intrusion, by re-
routing traffic around them, utilizing the CPU power of 
infected machines and stealing sensitive information.  

A considerable part of the paper is dedicated 
to drawing an emotional picture of the subverted 
network. The author mostly focuses on fictional 
aspects of such an attack, as opposed to exploring the 
particular destructive directions an attacker might take.  

The author briefly mentions that in order to 
safely use the updates, the worm instances would have 
to have the originator�s public key, and authenticate 
each update to prevent unauthorized patches that might 
disrupt the operation of the worm. 

A hypothetical concept of Curious Blue, a 
worm that cleans up after a Curious Yellow infection 
by using similar propagation strategies, or by 
exploiting a potential vulnerability in Curious Yellow 
itself, is also briefly mentioned. However, the author 
agrees with security experts on the fact that forcefully 
patching a large number of arbitrary servers is a very 
questionable action, both from the legal and technical 
point of view. 

 



2.3 Cryptovirology 
 
As an attempt to outline more concrete threat 

the rapidly propagating worms carry, we will briefly 
describe a 1996 study on cryptovirology [5]. It presents 
an interesting twist on cryptography, showing its 
possible malicious applications. 

The authors start off by analyzing several 
viruses with cryptographic capabilities that have been 
observed during that time. LZR, AIDS Information 
Trojan and KOH were viruses briefly observed on 
some computers in 1994-1996 that exhibited some 
characteristics that the authors generalize to the main 
idea of the paper. The main goal is to make a victim 
host dependent upon the virus. They define a property 
of a high survivability of a virus, which can be 
summarized as �you kill the virus, you lose the data�. 
As a close approximation to a highly survivable virus, 
they suggest a scenario where a virus make the victim 
host depended upon the originator of the virus. Such 
virus would encrypt some sensitive data with some 
public key, but it would not contain a private key to 
decrypt it, therefore making any attempts to recover the 
data by analyzing its source code useless. The 
originator of such virus would hold the key to the data, 
therefore gaining control over the victim. 

Cryptovirologic attacks exploit this 
dependency to the benefit of the virus originator. The 
authors consider two examples of such attacks, a 
reversible denial of service attack, and an information 
extortion attack. 

In a reversible denial of service attack, the 
virus is equipped with a strong random number 
generator and a strong seeding procedure, and mounts 
an attack by generating a random session key Ks, and a 
random initialization vector IV. A simple cryptographic 
protocol forms the basis for the attack. The message 
{Ks,IV} is encrypted with the public key of the virus� 
originator, resulting in cipher text C. Next, the virus 
encrypts the targeted data on the victim�s system using 
Ks,IV, and a symmetric algorithm. After successful 
encryption, the virus overwrites the original data. 
Finally, the virus prompts the victim�s operator to send 
cipher text C to the virus� originator, obtain a 
decrypted version of C, and regain access to their data 
by decrypting it with Ks, and IV. We note that this 
attack is more efficient with relatively small files, since 
encrypting a large file might reveal the virus and also it 
complicates the exchange process. 

Another interesting kind of cryptovirologic 
attack we will describe here is the information 
extortion attack. This kind of attack is based on trading 
access to some target data in exchange for other data 
which is more valuable to the victim that the virus 
managed to get a hold of. The virus encrypts the 
sensitive data on victim�s host as before, and then it 
calculates a checksum of a (possibly very large) file 
targeted by the attacker. The virus then prompts for the 
exchange of cipher text C from the previous attack that 

now also contains the checksum, and the targeted data, 
for the key to the hijacked victim�s data. Virus owner 
compares the checksum to the data received, and if 
really is the data desired, the key is released and the 
victim safely recovers the data. 

The remainder of the work is dedicated to 
modifying a cryptovirus in such a way so it becomes 
highly survivable. The authors suggest distributing 
parts of the private key with virus instances, so that 
complete recovery is possible only if all victims 
cooperate, and explore the various arrangements and 
capabilities this approach carries. We leave out most of 
this discussion, since we feel that the arrangement in 
which the originator of the virus controls the data 
would be much more useful in the context of fast-
spreading viruses. 

The authors describe a rudimentary 
mechanism of supplying automatic feedback to the 
author of cryptoviruses. In order to steal the needed 
data without directly interacting with the victim, the 
author would have to intercept one of the victim�s 
virus� offspring that would contain an encrypted copy 
of the data. However, they admit that such a scenario is 
highly unlikely and inefficient, especially considering 
the rates at which viruses propagated at the time the 
paper was written.  

Some suggestions for countermeasures are 
actually included in the work. Traditional active virus 
detection and frequent backups are proposed. Another 
suggestion is strict control over cryptographic tools. 
Since including all necessary tools with the virus 
would make it large, inefficient and easy to detect, the 
virus actually has to rely on the ones built into the 
victim system, and the authors argue that by carefully 
controlling such accesses, the virus can be defeated. 
However, they do not supply any scenarios of such 
control; furthermore, they admit that this would be 
relatively hard to enforce. 

 
3. Open Questions 

 
As a relatively recent development, a 

linux.slapper worm appeared to be the first attempt to 
implement a coordinated malicious network [12]. The 
Linux-based worm created a peer-to-peer network of 
infected nodes. Communication was basic, allowing 
the network to learn its own topology, and launch 
DDOS attacks as a single unit when commanded from 
a single remote location. Slapper missed the ability to 
authenticate communication, and it was quickly 
contained, partly due to the prompt response by 
affected Red Hat Apache server administrators. 

 
We note that in the Curious Yellow scheme, 

coordinated infection might not be very useful -- 
partitioned permutation seems a sufficient strategy to 
avoid overlapped scanning. However, coordinated 
control and update mechanisms, as we stated before, 



open a multitude of opportunities for malicious 
activity. 

 
3.1 Damage 

 
Let us imagine a cryptovirologic superworm. 

It would combine the propagation speed of the Warhol 
worm, or a Flash worm, depending on the capabilities 
of the creator; communication capabilities of Curious 
Yellow, and cryptography-based malicious payload. 
Traditional active virus detection, proposed as one 
countermeasure, would be helpless against such worm, 
since the updates could be distributed much faster that 
the system administrators can clean their system. The 
virus stays afloat by constantly re-infecting the whole 
Internet using new zero-day vulnerabilities discovered 
by the worm owner. Despite the observation that as the 
worms get more complex, they become more 
vulnerable and easier to subvert themselves [13], a 
team of highly motivated experts with a solid 
destructive plan can easily produce a fault-free design 
and implementation of such a worm. Regular updates 
ensure invisibility even from the Curious Blue worm, 
which attempts to disinfect the victims. Worm 
instances observe schemes of access control to 
cryptographic tools on the victims� systems and trick 
them into allowing access to those tools. All attempts 
to analyze the traffic and track down the worm owner 
fail, since all traffic is minimized -- most of the times, 
it is not even apparent that a victim is infected; and 
finally, we can suggest periodic traffic exchanges to 
prevent traffic analysis. Even if some of these periodic 
exchange messages are observed, it would not be clear 
if the message, which is, of course, encrypted, actually 
contains some meaningful date (like an update), or 
simply is a placeholder message.  

We note that the full scheme, in which all 
instances of the worm and its creator remain 
completely anonymous, and yet communication occurs 
on the regular basis without revealing the parties 
involved, is yet to be developed. However, it would be 
wise to assume that such a scheme can be implemented 
in the nearest future and prepare for the worst. 

Frequent backups would be a somewhat 
effective measure against the cryptovirologic attacks of 
the worm; however, staying undetected for a long 
period of time and carefully analyzing the information 
flow on the victim system allows the worm to hijack 
the sensitive data between the backups. Therefore, we 
can conclude that none of the countermeasures 
presented in the covered works would be an adequate 
response to the worm. 

 
Furthermore, we observe that this worm 

would threaten the existence of most of the digital 
payment schemes ([6],[7]), as well some certificate 
systems ([8]). E-cash and certificates can be instantly 
subverted, and either traded for real money, or same e-
cash, or for some sensitive information.  

 
3.2 Countermeasures 

 
Apart from vague advice to perform the back-

ups and patch the systems on the regular basis, there 
are a few things that we can suggest.  

Specifically for certificates and e-cash 
schemes, we can suggest storing them in encrypted 
form, so that even in case of an infection, the worm 
would not be able to tell that encrypted data from 
regular files which present no interest to it. However, 
that appears to be a non-trivial implementation 
problem, since the victim needs to somehow obtain 
these, and the very request for them might lead the 
worm to the encrypted versions of certificates and e-
cash. Even though they cannot be stolen in encrypted 
form, they still can be subverted once the worm finds 
out about the nature of that data. 

One effective tool to combat the 
cryptovirologic superworm that we envision are 
automated response-enabled Intrusion Detection 
Systems (IDS). Although state-of-the-art is not at that 
point yet, a fruitful direction for research would be 
trying to develop coordinated response-enabled IDS�s 
that quickly generate signatures of unknown attacks 
and communicate them to their peers before the worm. 
Specification-based IDS�s that allow detection of 
unknown attack and automated response techniques are 
now being developed at several research sites, 
including the University of California, Davis Computer 
Security Lab. 

 
4. Summary 

 
By analyzing the successful worm 

implementations, we can conclude that only the lack of 
the clear damage strategy saved the Internet this time. 
The propagation strategies used in real attacks were not 
the most well-thought-out, either. Needless to say, a 
coordinated and well-planned attack can be much more 
devastating unless some countermeasures are taken. 

In this work, we tried to combine the most 
notable recent works on the fast propagating malicious 
viruses with an interesting work on viruses with 
cryptographic capabilities to explore the extent of the 
possible damage that can be done by such a 
combination. We explored the questions that we felt 
these works left open. We also analyzed suggested 
countermeasures to such a worm, and proposed a few 
countermeasures of our own. 
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