

Superworms and Cryptovirology: a Deadly Combination

Ivan Balepin

Department of Computer Science
University of California, Davis

ibalepin@ucdavis.edu

Abstract
Understanding the possible extent of the future attacks
is the key to successfully protecting against them.
Designers of protection mechanisms need to keep in
mind the potential ferocity and sophistication of
viruses that are just around the corner. That is why we
think that the potential destructive capabilities of fast
spreading worms like the Warhol worm, Flash worm
and Curious Yellow need to be explored to the
maximum extent possible. While re-visiting some
techniques of viruses from the past, we can come
across some that utilize cryptographic tools in their
malicious activity. That alarming property, combined
with the speed of the so-called �superworms�, is
explored in the present work. Suggestions for
countermeasures and future work are given.
Keywords: computer viruses, worms, cryptography,
cryptovirology

1. Introduction

The most distinctive and alarming trends in

current computer attacks are high automation and
speed, increasing sophistication of attack tools,
vulnerability discovery rate that is hard to keep up
with, increasing permeability of firewalls and highly
asymmetric nature of threat [1]. Monitoring
organizations name worms as one of the four most
alarming types of today�s attacks.

The most notable incidents that caused such
concern include the outbreaks of Code Red [10], Code
Red II [11], Nimda [9], and, more recently,
linux.slapper [12] worms. All four worms were noted
for their extraordinary propagations speeds; however,
damage-wise, they were rated as a low threat. Such a
discrepancy between the levels of propagation
techniques and destructive capabilities was
immediately spotted, and several interesting works
were produced ([2],[3],[4]) that (sometimes too
emotionally) put the situation in perspective and
explored the limits of destructive potential of fast-
spreading, cooperating malicious entities.

However, this potential becomes even more
overwhelming when one tries to combine the swiftness
of the worms with the ferocity of some viruses from
the past. Cryptography, as some point out [5], is
usually thought of as a science that supplies us with
tools to enforce integrity and confidentiality; however,

its undoubted strengths can be used to attack these
same properties. Some of the studied viruses relied on
cryptographic tools to cause damage that is quite hard
to un-do.

This paper explores the combination of fast
worms and cryptovirologic virus techniques. First, in
Section 2.1, we give a survey of works describing the
Warhol worm, Flash worm and Curious Yellow. Then,
in Section 2.2 we describe Cryptovirology and
potential damage that can be done by viruses with
cryptographic capabilities. Section 3 is dedicated to
further damage assessment and the countermeasures to
the problem that we suggest. Finally, Section 4 is a
summary of the ideas outlined in this paper.

2. Overview

2.1 Warhol Worm

The widely discussed [13] work on the

Warhol worm begins by a quick analysis of the worms
that plagued the internet in 2001. The famous Code
Red virus was quite successful in its propagation.
However, it performed random automatic scanning for
the new victims, and utilized only one vulnerability in
the Microsoft Internet Information Services (IIS). The
worm did not use any local information to spread itself
more efficiently. It did not have any communication or
coordination capabilities.

Nonetheless, after a quick analysis, the
authors come to a conclusion that the proportion of
web servers infected grew exponentially with time. In
the beginning, each infected server was able to find 1.8
other vulnerable servers per hour; in the final stages of
the worm�s life, the rate was 0.7. Code Red turned
itself off on July 19, 2001.

Damage-wise, Code Red had a distributed
denial of service (DDOS) payload targeting the IP
address of www.whitehouse.gov, and some web site
defacement capabilities. Apart from that, it initiated an
extraordinary amount of scanning traffic from the
victim host. While somewhat bothersome, these actions
cannot be considered a serious attack and indicate that
the creator of the worm most likely pursued
experimental goals.

A distinctive characteristic of Code Red is the
very random nature of scanning it performed.
According to the authors� data, Code Red entities

scanned the same computers for the same
vulnerabilities up to 500000 times per hour! The
proportion of wasted scanning traffic becomes even
more impressive if we consider the percentage of all
possible IP addresses that actually map to active web
servers running IIS with the targeted vulnerability.
Such a random propagation strategy has several
disadvantages: it wastes victim�s resources, greatly
reduces the propagation speed, reveals itself on the
target system, and makes the worm world-famous in a
matter of hours.

Code Red II targeted the same single IIS
vulnerability as Code Red. As a scanning strategy
improvement, it chose a random IP address from the
victim�s the class B address space with probability of
3/8, a random IP address from the victim�s the class A
address space with probability of 1/2, and an absolutely
random IP address with a probability of 1/8. The
authors note that such improved scanning strategy was
successful, due to the fact that apparently hosts with
similar vulnerabilities tend to be closer on the network,
and also the quicker contamination of firewall-
protected domains, once some Code Red II instance
managed to get inside such network. The worm died by
design on October 1, 2001.

Based on the new propagation strategy, we
can conclude that the author of Code Red II, most
likely, also pursued experimental goals, taking no time
to address multiple vulnerabilities, or develop a more
meaningful way to spread the virus.

The new virus had a potentially more
damaging payload, which installed a root backdoor
allowing unrestricted remote access to the infected
host. However, Code Red II was quickly contained too,
immediately revealing itself on the victim hosts.

The authors also argue that analysis of Code
Red II behavior would be more involved than Code
Red�s, due to the fact that the two viruses overlapped
and interfered with each other, and also to the local
scanning strategy of the former.

Finally, the authors describe the Nimda worm,
which contained a few obvious improvements. Nimda
used five different ways to propagate itself, namely: an
IIS vulnerability, bulk emails, open network shares,
defaced web pages to infect visitors through their
browsers and backdoors left by Code Red II and
sadmind viruses. Such multi-vector approach also
helped to penetrate the firewalls quicker, since most
organizations leave incoming mail handling to the mail
server or even users themselves. These improvements
made Nimda another widely discussed worm; however,
Nimda still appears to be a quick hack that lacks any
solid design or purpose. The worm displayed the same
characteristics; the authors cite their measurements on
a Lawrence Berkeley National Laboratory computer
that showed a peak hit rate of 140 Nimda HTTP
connections per second. Despite the same inefficiency,
system administrators report Nimda activity still, more
than a year since the attack [13].

Nimda did not carry a communication or
coordination payload. According to most sources
([9],[2]), the worm did not include any apparent
destructive functions, apart from the ones that
facilitated further propagation.

A large part of the paper is dedicated to

considering possible worm improvements. The authors
refer to the improved virus as a �Warhol worm�. First,
they look at so-called �hit-list scanning�, which is
collecting a list of vulnerable hosts prior to worm
launch. After the pre-scanning stage, the worm would
be unleashed on the hosts in the list. The authors argue
that it took existing worm the longest to infect the first
10000 hosts and infection grew exponentially;
therefore, a boost of 50000 would greatly speed up the
propagation.

Permutation scanning is another improvement
targeted at reducing the scanning overlap between
warm entities. The new worm would generate an IP
address space permutation using a 32-bit block cipher
and a pre-selected key. It would encrypt an IP to get
the corresponding permutation, and decrypt to get an
IP. During the infection, it would work up the
permutation starting from a random IP�s hash, and re-
start at a random point in the hash every time it comes
across an already infected system. Another
improvement would be to stop completely after
running into several infected hosts in row; that would
indicate that the Internet is completely infected.

In a partitioned permutation scheme, worm
instances get a hash range they are responsible for, and
they halve their range every time they infect a new
host, giving the other half to the new instance. When
an instance completes its range scan, it restarts from a
random point in the hash.

Topological scanning relies on the information
and properties of the infected hosts, such as email
addresses found on hard drives, a list of peers from a
peer-to-peer networks a host might be participating in,
etc. Some ([13]) note that a �spider� type of virus,
which would operate similarly to web indexing and
email collecting spiders, might also be efficient. That
kind of a virus would be completely topology-
dependent, traversing the network using popular
protocols (HTTP, FTP, etc.) following the links it
collects on its way. Such a possibility can also be
considered in a separate work. Giving a Warhol worm
spider-like capabilities appears to be another
improvement in its propagation techniques.

The authors proceed to describe a so-called
Flash worm. Such a worm, they argue, would require a
somewhat more involved preparation stage, however,
their simulations show that it would spread out in about
30 seconds as opposed to 15 minutes it takes the
Warhol worm to subvert the Internet. In order to start a
Flash worm, an individual (or a terrorist organization)
would preferably have an access to an OC-12 type of
network connection. In that case, according to the

authors� calculations, they would be able to pre-scan
the whole web server space in a reasonable amount of
time, and build a list of approximately 9 million web
servers to start with. Such a list would cover the
majority of the Internet, according to the recent
Netcraft survey [14], and would require only 7.5
Mbytes to store in compressed form, according to
authors� calculations. The first Flash worm instances
would take the entire list, and would handle it similarly
to the permutation scanning hash, halving the list for
every new victim. Some redundancy would be required
to prevent the first several instances from getting
caught and not covering their part of the Internet.

Finally, the authors describe a stealthy slow-
propagating contagion worm, which prefers concealing
itself to fast propagation. Although it presents another
interesting research topic, we would like to focus on
the first two worms as the ones having a greater
destructive potential.

Throughout the paper, the authors
complement their arguments with descriptions of
measurements and simulations they performed, and
overall form an impression of a credible research work.

We observe that despite being a first serious
analysis of worm design and suggesting a multitude of
further research directions, the authors seldom mention
a possibility of worm instances cooperating
communicating with each other and the originator of
the worm. We also note that the described worms do
not rely on any cryptographic mechanisms except for
trivial IP hashing for permutation scanning or, perhaps,
encrypting itself to hide from static anti-virus scanners.

Nicholas Weaver published a follow-up work
exploring how permutation scanning interacts with
different ways the virus spreads itself ("multimode" or
"multivector" worms). He also included a brief
discussion of distributed control and update
mechanisms; however, it still did not contain a solid
coordination strategy.

2.2 Curious Yellow

The issues of worm communication and

coordination were addressed in the design of a Curious
Yellow worm [4].

Although the work is somewhat fictional in it
nature and the author does not always provide a proof
for his ideas, it presents another serious analysis of the
worm potential and numerous directions for future
research.

First, the author describes the benefits of
worm coordination, which include the ability to easily
assign an infection domain to each instance of the
worm, easy control and update mechanisms, and less
traffic which reveals the worm.

The difficulties of such coordination include
problems with the truly gigantic scale of coordination,
minimizing coordination costs, the need to take
spoofed updates into account, etc. The author

concludes that some of these issues are similar to the
ones observed in large scale peer-to-peer networks.

The author then proceeds to describing a peer-
to-peer Chord strategy developed at MIT [15] in the
context of a large-scale worm. The scheme, which is
essentially a distributed hash table, is used to assign
portions of task space to individual instances of the
worm. In the improved version of Chord, Achord, all
nodes act anonymously: a node cannot determine the
identity of other nodes. The author argues that in a
developing worm network, it would take a node
O(logN) time to communicate with any other node, and
a node would have to store information about O(logN)
nodes for the most efficient communication. Therefore,
in a network of 10 million nodes (which approximates
the number of potential infected web servers) it would
take correspondingly 23 node hops and 23 nodes to
store. The instances use a hash (for example, SHA1)
for identification, and once they find a new target, they
pass it to the closest neighbor, or infect it themselves.

As an unsupported claim, the author argues
that the Curious Yellow worm would form a fully
connected network, and any messages such as code
updates, etc., could be distributed network-wide in less
that 15 seconds. Although that estimate remains to be
verified, if we accept it, then we now have a malicious
network that potentially can patch itself much quicker
than a corresponding solution would be distributed
network-wide.

In the section that explores potential uses for
such a powerful network, the author notes that a DDOS
against a few servers or disruption of the entire Internet
would not utilize the worm to its full potential. Among
the more creative uses the author names the possibility
of defacing web pages uncontrollably, either at the host
or at surrounding routers, isolating the unwanted
servers, or the ones resisting the intrusion, by re-
routing traffic around them, utilizing the CPU power of
infected machines and stealing sensitive information.

A considerable part of the paper is dedicated
to drawing an emotional picture of the subverted
network. The author mostly focuses on fictional
aspects of such an attack, as opposed to exploring the
particular destructive directions an attacker might take.

The author briefly mentions that in order to
safely use the updates, the worm instances would have
to have the originator�s public key, and authenticate
each update to prevent unauthorized patches that might
disrupt the operation of the worm.

A hypothetical concept of Curious Blue, a
worm that cleans up after a Curious Yellow infection
by using similar propagation strategies, or by
exploiting a potential vulnerability in Curious Yellow
itself, is also briefly mentioned. However, the author
agrees with security experts on the fact that forcefully
patching a large number of arbitrary servers is a very
questionable action, both from the legal and technical
point of view.

2.3 Cryptovirology

As an attempt to outline more concrete threat

the rapidly propagating worms carry, we will briefly
describe a 1996 study on cryptovirology [5]. It presents
an interesting twist on cryptography, showing its
possible malicious applications.

The authors start off by analyzing several
viruses with cryptographic capabilities that have been
observed during that time. LZR, AIDS Information
Trojan and KOH were viruses briefly observed on
some computers in 1994-1996 that exhibited some
characteristics that the authors generalize to the main
idea of the paper. The main goal is to make a victim
host dependent upon the virus. They define a property
of a high survivability of a virus, which can be
summarized as �you kill the virus, you lose the data�.
As a close approximation to a highly survivable virus,
they suggest a scenario where a virus make the victim
host depended upon the originator of the virus. Such
virus would encrypt some sensitive data with some
public key, but it would not contain a private key to
decrypt it, therefore making any attempts to recover the
data by analyzing its source code useless. The
originator of such virus would hold the key to the data,
therefore gaining control over the victim.

Cryptovirologic attacks exploit this
dependency to the benefit of the virus originator. The
authors consider two examples of such attacks, a
reversible denial of service attack, and an information
extortion attack.

In a reversible denial of service attack, the
virus is equipped with a strong random number
generator and a strong seeding procedure, and mounts
an attack by generating a random session key Ks, and a
random initialization vector IV. A simple cryptographic
protocol forms the basis for the attack. The message
{Ks,IV} is encrypted with the public key of the virus�
originator, resulting in cipher text C. Next, the virus
encrypts the targeted data on the victim�s system using
Ks,IV, and a symmetric algorithm. After successful
encryption, the virus overwrites the original data.
Finally, the virus prompts the victim�s operator to send
cipher text C to the virus� originator, obtain a
decrypted version of C, and regain access to their data
by decrypting it with Ks, and IV. We note that this
attack is more efficient with relatively small files, since
encrypting a large file might reveal the virus and also it
complicates the exchange process.

Another interesting kind of cryptovirologic
attack we will describe here is the information
extortion attack. This kind of attack is based on trading
access to some target data in exchange for other data
which is more valuable to the victim that the virus
managed to get a hold of. The virus encrypts the
sensitive data on victim�s host as before, and then it
calculates a checksum of a (possibly very large) file
targeted by the attacker. The virus then prompts for the
exchange of cipher text C from the previous attack that

now also contains the checksum, and the targeted data,
for the key to the hijacked victim�s data. Virus owner
compares the checksum to the data received, and if
really is the data desired, the key is released and the
victim safely recovers the data.

The remainder of the work is dedicated to
modifying a cryptovirus in such a way so it becomes
highly survivable. The authors suggest distributing
parts of the private key with virus instances, so that
complete recovery is possible only if all victims
cooperate, and explore the various arrangements and
capabilities this approach carries. We leave out most of
this discussion, since we feel that the arrangement in
which the originator of the virus controls the data
would be much more useful in the context of fast-
spreading viruses.

The authors describe a rudimentary
mechanism of supplying automatic feedback to the
author of cryptoviruses. In order to steal the needed
data without directly interacting with the victim, the
author would have to intercept one of the victim�s
virus� offspring that would contain an encrypted copy
of the data. However, they admit that such a scenario is
highly unlikely and inefficient, especially considering
the rates at which viruses propagated at the time the
paper was written.

Some suggestions for countermeasures are
actually included in the work. Traditional active virus
detection and frequent backups are proposed. Another
suggestion is strict control over cryptographic tools.
Since including all necessary tools with the virus
would make it large, inefficient and easy to detect, the
virus actually has to rely on the ones built into the
victim system, and the authors argue that by carefully
controlling such accesses, the virus can be defeated.
However, they do not supply any scenarios of such
control; furthermore, they admit that this would be
relatively hard to enforce.

3. Open Questions

As a relatively recent development, a

linux.slapper worm appeared to be the first attempt to
implement a coordinated malicious network [12]. The
Linux-based worm created a peer-to-peer network of
infected nodes. Communication was basic, allowing
the network to learn its own topology, and launch
DDOS attacks as a single unit when commanded from
a single remote location. Slapper missed the ability to
authenticate communication, and it was quickly
contained, partly due to the prompt response by
affected Red Hat Apache server administrators.

We note that in the Curious Yellow scheme,

coordinated infection might not be very useful --
partitioned permutation seems a sufficient strategy to
avoid overlapped scanning. However, coordinated
control and update mechanisms, as we stated before,

open a multitude of opportunities for malicious
activity.

3.1 Damage

Let us imagine a cryptovirologic superworm.

It would combine the propagation speed of the Warhol
worm, or a Flash worm, depending on the capabilities
of the creator; communication capabilities of Curious
Yellow, and cryptography-based malicious payload.
Traditional active virus detection, proposed as one
countermeasure, would be helpless against such worm,
since the updates could be distributed much faster that
the system administrators can clean their system. The
virus stays afloat by constantly re-infecting the whole
Internet using new zero-day vulnerabilities discovered
by the worm owner. Despite the observation that as the
worms get more complex, they become more
vulnerable and easier to subvert themselves [13], a
team of highly motivated experts with a solid
destructive plan can easily produce a fault-free design
and implementation of such a worm. Regular updates
ensure invisibility even from the Curious Blue worm,
which attempts to disinfect the victims. Worm
instances observe schemes of access control to
cryptographic tools on the victims� systems and trick
them into allowing access to those tools. All attempts
to analyze the traffic and track down the worm owner
fail, since all traffic is minimized -- most of the times,
it is not even apparent that a victim is infected; and
finally, we can suggest periodic traffic exchanges to
prevent traffic analysis. Even if some of these periodic
exchange messages are observed, it would not be clear
if the message, which is, of course, encrypted, actually
contains some meaningful date (like an update), or
simply is a placeholder message.

We note that the full scheme, in which all
instances of the worm and its creator remain
completely anonymous, and yet communication occurs
on the regular basis without revealing the parties
involved, is yet to be developed. However, it would be
wise to assume that such a scheme can be implemented
in the nearest future and prepare for the worst.

Frequent backups would be a somewhat
effective measure against the cryptovirologic attacks of
the worm; however, staying undetected for a long
period of time and carefully analyzing the information
flow on the victim system allows the worm to hijack
the sensitive data between the backups. Therefore, we
can conclude that none of the countermeasures
presented in the covered works would be an adequate
response to the worm.

Furthermore, we observe that this worm

would threaten the existence of most of the digital
payment schemes ([6],[7]), as well some certificate
systems ([8]). E-cash and certificates can be instantly
subverted, and either traded for real money, or same e-
cash, or for some sensitive information.

3.2 Countermeasures

Apart from vague advice to perform the back-

ups and patch the systems on the regular basis, there
are a few things that we can suggest.

Specifically for certificates and e-cash
schemes, we can suggest storing them in encrypted
form, so that even in case of an infection, the worm
would not be able to tell that encrypted data from
regular files which present no interest to it. However,
that appears to be a non-trivial implementation
problem, since the victim needs to somehow obtain
these, and the very request for them might lead the
worm to the encrypted versions of certificates and e-
cash. Even though they cannot be stolen in encrypted
form, they still can be subverted once the worm finds
out about the nature of that data.

One effective tool to combat the
cryptovirologic superworm that we envision are
automated response-enabled Intrusion Detection
Systems (IDS). Although state-of-the-art is not at that
point yet, a fruitful direction for research would be
trying to develop coordinated response-enabled IDS�s
that quickly generate signatures of unknown attacks
and communicate them to their peers before the worm.
Specification-based IDS�s that allow detection of
unknown attack and automated response techniques are
now being developed at several research sites,
including the University of California, Davis Computer
Security Lab.

4. Summary

By analyzing the successful worm

implementations, we can conclude that only the lack of
the clear damage strategy saved the Internet this time.
The propagation strategies used in real attacks were not
the most well-thought-out, either. Needless to say, a
coordinated and well-planned attack can be much more
devastating unless some countermeasures are taken.

In this work, we tried to combine the most
notable recent works on the fast propagating malicious
viruses with an interesting work on viruses with
cryptographic capabilities to explore the extent of the
possible damage that can be done by such a
combination. We explored the questions that we felt
these works left open. We also analyzed suggested
countermeasures to such a worm, and proposed a few
countermeasures of our own.

5. References

[1] CERT Coordination Center, 2002 Overview of

Attack Trends,
http://www.cert.org/archive/pdf/attack_trends.
pdf, last accessed on December 4, 2002.

[2] Staniford S., Paxson V., Weaver N., How to
0wn the Internet in Your Spare Time,
Proceedings of the 11th USENIX Security
Symposium, San Francisco, CA, 2002.

[3] Weaver, N., Potential Strategies for High

Speed Active Worms: A Worst Case Analysis,
http://www.cs.berkeley.edu/~nweaver/worms.
pdf, last accessed on December 4, 2002.

[4] Wiley, B., Curious Yellow: The First

Coordinated Worm Design,
http://blanu.net/curious_yellow.html, last
accessed on December 4, 2002

[5] Young A., Yung M., Cryptovirology:

Extortion-Based Security Threats and
Countermeasures, IEEE Symposium on
Security and Privacy, Oakland, CA, 1996.

[6] Chaum D., Security without Identification:

Card Computers to make Big Brother
Obsolete, Communications of the ACM, vol.
28 no. 10, October 1985 pp. 1030-1044.

[7] Rivest R., Shamir A., PayWord and

MicroMint -- Two Simple Micropayment
Schemes, 4th Security Protocols International
Workshop, Cambridge, UK, 1996.

[8] International Telecommunications Union,

Recommendation X.509 � the Directory
Authentication Framework, 1993

[9] CERT Coordination Center, CERT® Advisory

CA-2001-26 Nimda Worm,
http://www.cert.org/advisories/CA-2001-
26.html, last accessed on December 4, 2002.

[10] CERT Coordination Center, CERT® Advisory

CA-2001-19 "Code Red" Worm,
http://www.cert.org/advisories/CA-2001-
19.html, last accessed on December 4, 2002

[11] CERT Coordination Center, CERT® Incident

Note IN-2001-09,
http://www.cert.org/incident_notes/IN-2001-
09.html, last accessed on December 4, 2002

[12] CERT Coordination Center, CERT® Advisory

CA-2002-27 Apache/mod_ssl Worm,
http://www.cert.org/advisories/CA-2002-
27.html, last accessed on December 4, 2002

[13] Slashdot.org, Malicious Distributed

Computing,
http://slashdot.org/article.pl?sid=02/10/25/141
3220&mode=thread&tid=172, last accessed
on December 4, 2002

[14] Netcraft, Netcraft Web Server Survey,

http://www.netcraft.com/survey, last accessed
on December 4, 2002

[15] Dabek F., Brunskill E., Frans Kaashoek M.,

et. al. Building Peer-to-Peer Systems with
Chord, a Distributed Lookup Service, IEEE
Eighth Workshop on Hot Topics in Operating
Systems p. 81, Elmau, Germany, May 20 - 22,
2001

